公众号
RSS https://github.com/wanghenshui/cppweeklynews/releases.atom
欢迎投稿,推荐或自荐文章/软件/资源等
本周内容不多
标准委员会动态/ide/编译器信息放在这里
编译器信息最新动态推荐关注hellogcc公众号 本周更新 2023-07-05 第209期
虽然是老文了,对于清晰概念还是有一定的帮助的。讨论了很多基础概念,以及各种时序场景,我觉得都可以复述一遍这个演讲,增加自己理解
能讲给别人进步最快,各位可能都讲过题,要不要挑战一下
template <template <class...> class TList, class TEvent, class... TEvents, class T, class TExpr>
constexpr auto dispatch(TList<TEvent, TEvents...>, const int id, const T& data,
const TExpr& expr) -> decltype(expr(TEvent{data})) {
switch (id) {
case TEvent::id:
return expr(TEvent{data});
default:
if constexpr (sizeof...(TEvents) > 0) {
return dispatch(TList<TEvents...>{}, id, data, expr);
}
}
return {};
}
不太懂有啥用
overload谁都会写,但是可能存在隐式转换,比如
template<class... Ts>
struct overload : Ts... {
using Ts::operator()...;
};
template<class... Ts>
overload(Ts...) -> overload<Ts...>;
int main() {
const std::variant<int, bool> v{true};
std::visit(
overload{
[](int val) { std::cout << val; },
[](bool val) { std::cout << std::boolalpha << val; }, // 1
},
v);
}
这里的int bool模糊,可能发生转换。如果把1这行注释掉,visit一样能遍历,走int哪个分支。发生转换了我超!
如何杀死这种异常?
template<class...>
constexpr bool always_false_v = false;
template<class... Ts>
struct overload : Ts... {
using Ts::operator()...;
template<typename T>
constexpr void operator()(T) const {
static_assert(always_false_v<T>, "Unsupported type");
// c++23 static_assert(false, "Unsupported type");
}
};
template<class... Ts>
overload(Ts...) -> overload<Ts...>;
int main() {
const std::variant<int, bool> v{true};
std::visit(overload{
[](int val) { std::cout << val; },
[](bool val) { std::cout << std::boolalpha << val; },
},
v);
}
正常走Ts的operator(),如果类型不匹配(隐式转换的前提是没有别的实现),最佳匹配是static_assert的那个实现,匹配中,编译报错
自己的overload都改一下,这个还是值得一用的
这个问题其实和上面差不多,指针有隐式转换成bool的风险,可能一不小心写出bug
你比如有个类是这样的
class string_literal {
public:
operator const char*() const noexcept {
return m_ptr;
}
};
问题来了,char*转bool
int main() {
string_literal str;
if (str) {} //char* 转bool我超
str + 1; // char*取偏移我超
}
这种代码,如果真的有bug被引入,都不想琢磨,太恶心了
怎么修?限制转换,强制约束类型,和上面的方案不谋而合
class string_literal{
public:
template <std::same_as<const char*> T>
operator T() const noexcept
{
return m_ptr;
}
};
c++20的concept感觉没有大规模推开,大家为了旧代码没升级,没用上
代码在这里 https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/2023/07/01/src/sse_date.c
解析时间,常规写法
bool parse_time(const char *date_string, uint32_t *time_in_second) {
const char *end = NULL;
struct tm tm;
if ((end = strptime(date_string, "%Y%m%d%H%M%S", &tm)) == NULL) {
return false;
}
*time_in_second = (uint32_t)mktime_from_utc(&tm);
return true;
}
SSE代码我看不懂,直接贴了
bool sse_parse_time(const char *date_string, uint32_t *time_in_second) {
// We load the block of digits. We subtract 0x30 (the code point value of the
// character '0'), and all bytes values should be between 0 and 9,
// inclusively. We know that some character must be smaller that 9, for
// example, we cannot have more than 59 seconds and never 60 seconds, in the
// time stamp string. So one character must be between 0 and 5. Similarly, we
// start the hours at 00 and end at 23, so one character must be between 0
// and 2. We do a saturating subtraction of the maximum: the result of such a
// subtraction should be zero if the value is no larger. We then use a special
// instruction to multiply one byte by 10, and sum it up with the next byte,
// getting a 16-bit value. We then repeat the same approach as before,
// checking that the result is not too large.
//
__m128i v = _mm_loadu_si128((const __m128i *)date_string);
// loaded YYYYMMDDHHmmSS.....
v = _mm_xor_si128(v, _mm_set1_epi8(0x30));
// W can use _mm_sub_epi8 or _mm_xor_si128 for the subtraction above.
// subtracting by 0x30 (or '0'), turns all values into a byte value between 0
// and 9 if the initial input was made of digits.
__m128i limit =
_mm_setr_epi8(9, 9, 9, 9, 1, 9, 3, 9, 2, 9, 5, 9, 5, 9, -1, -1);
// credit @aqrit
// overflows are still possible, if hours are in the range 24 to 29
// of if days are in the range 32 to 39
// or if months are in the range 12 to 19.
__m128i abide_by_limits = _mm_subs_epu8(v, limit); // must be all zero
__m128i byteflip = _mm_setr_epi64((__m64)0x0607040502030001ULL,
(__m64)0x0e0f0c0d0a0b0809ULL);
__m128i little_endian = _mm_shuffle_epi8(v, byteflip);
__m128i limit16 = _mm_setr_epi16(0x0909, 0x0909, 0x0102, 0x0301, 0x0203,
0x0509, 0x0509, -1);
__m128i abide_by_limits16 =
_mm_subs_epu16(little_endian, limit16); // must be all zero
__m128i combined_limits =
_mm_or_si128(abide_by_limits16, abide_by_limits); // must be all zero
// We want to disallow 0s for days and months... and we want to make
// sure that we don't go back in time prior to 1900.
__m128i limit16_low = _mm_setr_epi16(0x0109, 0, 0x0001, 0x0001, 0, 0, 0, 0);
__m128i abide_by_limits16_low =
_mm_subs_epu16(limit16_low, little_endian); // must be all zero
combined_limits = _mm_or_si128(combined_limits, abide_by_limits16_low);
if (!_mm_test_all_zeros(combined_limits, combined_limits)) {
return false;
}
// 0x000000SS0mmm0HHH`00DD00MM00YY00YY
//////////////////////////////////////////////////////
// pmaddubsw has a high latency (e.g., 5 cycles) and is
// likely a performance bottleneck.
/////////////////////////////////////////////////////
const __m128i weights = _mm_setr_epi8(
// Y Y Y Y m m d d H H M M S S - -
10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 0, 0);
v = _mm_maddubs_epi16(v, weights);
uint64_t hi = (uint64_t)_mm_extract_epi64(v, 1);
uint64_t seconds = (hi * 0x0384000F00004000) >> 46;
uint64_t lo = (uint64_t)_mm_extract_epi64(v, 0);
uint64_t yr = (lo * 0x64000100000000) >> 48;
// We checked above that dy and mo are >= 1
uint64_t mo = ((lo >> 32) & 0xff) - 1;
uint64_t dy = (uint64_t)_mm_extract_epi8(v, 6);
bool is_leap_yr = is_leap_year((int)yr);
if (dy > (uint64_t)mdays[mo]) { // unlikely branch
if (mo == 1 && is_leap_yr) {
if (dy != 29) {
return false;
}
} else {
return false;
}
}
uint64_t days = 365 * (yr - 1970) + (uint64_t)leap_days(1970, (int)yr);
days += (uint64_t)mdays_cumulative[mo];
days += is_leap_yr & (mo > 1);
days += dy - 1;
uint64_t time_in_second64 = seconds + days * 60 * 60 * 24;
*time_in_second = (uint32_t)time_in_second64;
return time_in_second64 == (uint32_t)time_in_second64;
}
static const int mdays_minus_one[] = {30, 27, 30, 29, 30, 29, 30, 30, 29, 30, 29, 30};
// uses more instructions than sse_parse_time but might be slightly faster.
bool sse_parse_time_alt(const char *date_string, uint32_t *time_in_second) {
// We load the block of digits. We subtract 0x30 (the code point value of the
// character '0'), and all bytes values should be between 0 and 9,
// inclusively. We know that some character must be smaller that 9, for
// example, we cannot have more than 59 seconds and never 60 seconds, in the
// time stamp string. So one character must be between 0 and 5. Similarly, we
// start the hours at 00 and end at 23, so one character must be between 0
// and 2. We do a saturating subtraction of the maximum: the result of such a
// subtraction should be zero if the value is no larger. We then use a special
// instruction to multiply one byte by 10, and sum it up with the next byte,
// getting a 16-bit value. We then repeat the same approach as before,
// checking that the result is not too large.
//
// We compute the month the good old ways, as an integer in [0,11], we
// check for overflows later.
uint64_t mo = (uint64_t)((date_string[4]-0x30)*10 + (date_string[5]-0x30) - 1);
__m128i v = _mm_loadu_si128((const __m128i *)date_string);
// loaded YYYYMMDDHHmmSS.....
v = _mm_xor_si128(v, _mm_set1_epi8(0x30));
// W can use _mm_sub_epi8 or _mm_xor_si128 for the subtraction above.
// subtracting by 0x30 (or '0'), turns all values into a byte value between 0
// and 9 if the initial input was made of digits.
__m128i limit =
_mm_setr_epi8(9, 9, 9, 9, 1, 9, 3, 9, 2, 9, 5, 9, 5, 9, -1, -1);
// credit @aqrit
// overflows are still possible, if hours are in the range 24 to 29
// of if days are in the range 32 to 39
// or if months are in the range 12 to 19.
__m128i abide_by_limits = _mm_subs_epu8(v, limit); // must be all zero
__m128i byteflip = _mm_setr_epi64((__m64)0x0607040502030001ULL,
(__m64)0x0e0f0c0d0a0b0809ULL);
__m128i little_endian = _mm_shuffle_epi8(v, byteflip);
__m128i limit16 = _mm_setr_epi16(0x0909, 0x0909, 0x0102, 0x0301, 0x0203,
0x0509, 0x0509, -1);
__m128i abide_by_limits16 =
_mm_subs_epu16(little_endian, limit16); // must be all zero
__m128i combined_limits =
_mm_or_si128(abide_by_limits16, abide_by_limits); // must be all zero
if (!_mm_test_all_zeros(combined_limits, combined_limits)) {
return false;
}
// 0x000000SS0mmm0HHH`00DD00MM00YY00YY
//////////////////////////////////////////////////////
// pmaddubsw has a high latency (e.g., 5 cycles) and is
// likely a performance bottleneck.
/////////////////////////////////////////////////////
const __m128i weights = _mm_setr_epi8(
// Y Y Y Y m m d d H H M M S S - -
10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 0, 0);
v = _mm_maddubs_epi16(v, weights);
uint64_t hi = (uint64_t)_mm_extract_epi64(v, 1);
uint64_t seconds = (hi * 0x0384000F00004000) >> 46;
uint64_t lo = (uint64_t)_mm_extract_epi64(v, 0);
uint64_t yr = (lo * 0x64000100000000) >> 48;
// We compute the day (starting at zero). We implicitly
// check for overflows later.
uint64_t dy = (uint64_t)_mm_extract_epi8(v, 6) - 1;
bool is_leap_yr = is_leap_year((int)yr);
if(mo > 11) { return false; } // unlikely branch
if (dy > (uint64_t)mdays_minus_one[mo]) { // unlikely branch
if (mo == 1 && is_leap_yr) {
if (dy != 29 - 1) {
return false;
}
} else {
return false;
}
}
uint64_t days = 365 * (yr - 1970) + (uint64_t)leap_days(1970, (int)yr);
days += (uint64_t)mdays_cumulative[mo];
days += is_leap_yr & (mo > 1);
days += dy;
uint64_t time_in_second64 = seconds + days * 60 * 60 * 24;
*time_in_second = (uint32_t)time_in_second64;
return time_in_second64 == (uint32_t)time_in_second64;
}
还是介绍UDL
#include <regex>
struct convenience_matcher {
convenience_matcher(const char *str) : re(str) {}
bool match(const std::string &s) {
std::smatch base_match;
return std::regex_match(s, base_match, re);
}
bool operator()(const std::string &s) { return match(s); }
std::regex re;
};
"\\d+"_re("123") // true
"\\d+"_re("a23") // false
R"(\d+)"_re("123") // true
R"(\d+)"_re("a23") // false
看个乐,真要需要这种需求不如在线正则网站。只是个例子教你怎么用UDL
他这个背景我没怎么看懂,这里标记个TOOD
看不懂,这里标记个TOOD
Raymond Chen怎么这么能写啊我超,我一个没看
基础概念,没啥说的其实,就是怎么用concept
cppnow视频也放出来的若干个。最近尽可能看这个,和去年的演讲
https://asoffer.github.io/reflect-this-presentation/cppnow-2023/
讲反射的。讨论了一些现有的设计,实现了自己的一种设计,组合一波,还算有点意思
如果有疑问评论最好在上面链接到评论区里评论,这样方便搜索,微信公众号有点封闭/知乎吞评论